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An Eulerian-Lagrangian approach with an adaptively corrected  
method of characteristics to simulate
variably saturated water flow

K. Huang, R. Zhang,l and M. T. van Genuchten
U.S. Salinity Laboratory, Agricultural Research Service, USDA, Riverside, California

Abstract. A relatively simple method of characteristics is developed to simulate one-
dimensional variably saturated water flow. The method uses the Eulerian-Lagrangian
approach to separate the governing flow equation into “convection” and “diffusion”
parts, which are solved with the method of characteristics and the conventional finite
element method, respectively. The method of characteristics combines a single-step
reverse particle tracking technique with a correction strategy to ensure accurate mass
balances. The correction process is implemented by weighing the calculated convective
contribution to the pressure head at each node with the pressure head values of two
upstream nodes, using an adaptive weighing factor A. The value of A is automatically
adjusted by considering the global mass balance at each time step. Numerical
experiments for ponded infiltration are presented to illustrate the scheme’s performance
for situations involving highly nonlinear soil hydraulic properties and extremely dry
initial conditions. Results indicate that the proposed method is mass-conservative,
virtually oscillation-free, and computationally quite efficient. The method is especially
effective for simulating highly nonlinear flow scenarios for which traditional finite
difference and finite element numerical methods often fail to converge.

Introduction

Water flow in variably saturated media is an important
topic in several branches of hydrology, soil science, and
agricultural engineering dealing with subsurface flow and
chemical transport processes. Many authors have used a
variety of analytical techniques to solve the governing
equations for infiltration and water flow in soils [e.g., Philip,
1957; Parlange, 1972; Broadbridge and White, 1988; Warrick
et al., 1991]. Analytical solutions provide useful tools for
studying relatively simple unsaturated flow problems such as
infiltration in homogeneous soil profiles. However, they are
usually inappropriate for more complicated flow situations
because of their reliance on relatively simple initial and
boundary conditions and the need to adopt simplified func-
tions for the unsaturated soil hydraulic properties. Such
situations generally require the flexibility of a numerical
approach.

Accurate implementation of numerical techniques often
encounters difficulties when nonlinear variably saturated
flow problems are simulated. Numerical problems are usu-
ally manifested by a lack of convergence and/or the presence
of undesired oscillations in computed results when sharp
moisture fronts are present. Such situations arise, for exam-
ple, when calculating ponded infiltration in initially very dry
soils, particularly when the soil hydraulic properties are
highly nonlinear. Several methods have been proposed in
efforts to reduce the computational effort and/or provide

‘Now at Department of Plant, Soil, and Insect Sciences, Univer-
sity of Wyoming, Laramie.

This paper is not subject to U.S. copyright. Published in 1994 by the
American Geophysical Union.

Paper number 93 WR02881.

more stable numerical solutions. For example, Abriola
[1986]  used hierarchical basis functions to increase the
order, and hence accuracy, of the numerical scheme in
elements near the wetting front. Dane and Mathis  [1981]
presented an adaptive finite difference scheme that allows a
fine grid system to move with the wetting front. More
recently, Gottardi and Venutelli  [1992]  developed a rela-
tively sophisticated moving finite element model which uses
fewer nodes as compared to fixed-grid methods, and hence
can save CPU time when a relatively large flow domain is
involved. However, initial results indicate that this method
may yield larger mass balance errors than the conventional
finite difference and finite element methods. Gamliel and
Abriola [1992]  proposed similar schemes which refine the
numerical mesh in areas where the soil water pressure head
changes rapidly but expand the mesh in less transient
regions.

Numerical simulations based on the Richards’ equation
for variably saturated water flow generally use the pressure
head as the dependent variable. Many studies have observed
mass balance problems using this approach, presumably
because of nonlinearities in the soil water capacity term.
Milly [ 1985] proposed a mass-conservative numerical
scheme which greatly reduces the mass balance errors. He
evaluated the storage coefficient as an average value over
each element during each time step. Ross [1990]  concluded
that relatively large time steps are possible when the mass-
conservative mixed-form of the Richards’ equation is used.
Relatively large spatial increments were also possible when
a hyperbolic sine transform was implemented. Hills et al.
[1989]  described a water content based algorithm, which
appears to be superior to the traditional pressure-based
formulation for simulating unsaturated flow in layered soils.
Their scheme, however, could not be applied to conditions
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also involving saturated flow (i.e., positive pressure heads).
Celia and Pinder [1986], and more recently Celia et al.
[1990], proposed schemes which implement more accurate
and mass-conservative solutions of the mixed-form of the
Richards’ equation. In a different approach, Hansen et al.
[1992]  combined the adaptive grid refinement method with
an operator splitting technique to solve the two-phase im-
miscible flow equations.

Most of the studies above used relatively standard finite
element (FE) or finite difference (FD) methods to simulate
the variably saturated flow process. While the studies have
led to improvements, conventional FE and FD methods
always suffer to some degree from inherent numerical diffi-
culties, such as numerical oscillations, excessive numerical
dispersion, and mass balance errors. Besides the presence of
highly nonlinear hydraulic properties, numerical problems
are often also caused by the hyperbolic nature of the
governing equation when the gravitational term in the Rich-
ards’ equation is relatively important [Sorek and Braester,
1986; Huang, 1988]. Using this last attribute, Sorek and
Braester [ 1986] extended the adaptive Eulerian-Lagrangian
approach, initially introduced by Neuman [ 1984] for solving
convection-dispersion transport problems, to unsaturated
flow problems. While their method appears to improve
convergence, no successful simulation example was re-
ported in the paper. Moreover, their method requires a
relatively sophisticated scheme to track the cluster of parti-
cles in a nonlinear flow field. After similarly separating the
governing flow equation into convection and diffusion parts,
Huang [1988] used a different approach by implementing a
single-step reverse particle tracking (SRPT) technique to
solve the convection problem. Preliminary results indicated
several advantages of this approach, such as increased
computational efficiency and fewer numerical oscillations.
However, the scheme still exhibited relatively large mass
balance errors, as well as some minor numerical oscillations,
especially for highly nonlinear soil hydraulic properties.

The purpose of this paper is to extend and generalize the
Eulerian-Lagrangian solution scheme of Huang [1988].  A
numerically robust and computationally efficient method will
be presented which combines the modified method of char-
acteristics, SRPT, with the conventional finite element ap-
proach. The scheme is further improved by incorporating a
self-adaptive weighing procedure which virtually eliminates
mass balance errors.

Governing Equations

The governing equation for one-dimensional, vertical wa-
ter flow in a variably saturated rigid porous medium is given
by

C;=; Kg-K -S(z,  t)
i 1

(1)

where h is the pressure head, C = d0ldh is the soil water
capacity in which 0 is the volumetric water content, K is the
hydraulic conductivity, S( Z, t) represents a source/sink term
(e.g., root water uptake rate), z is soil depth assumed to be
positive downward, and t is time. The flow equation is
solved subject to the general initial condition

h(z, 0) = hi(z) (2)

and either a first- or second-type boundary condition at the
soil surface (z, = 0), that is,

h(O, t) = h,(t) (3)

or

(4)

where h,(t) and q,,(t)  are the prescribed pressure head and
net fluid flux, respectively. The auxiliary condition used here
for the lower boundary (Z = 1) is that of a free draining soil
profile as follows:

ah
- = 0 (5)az I z=l

We further assume that the soil hydraulic properties, B(h)
and K(B), can be described by the parametric functions of
van Genuchten [ 19801

e(h) = ‘r + (1 + (ah,“)!71 (6)

K(S,) = K,S;‘*[l - (1 - s;‘m)m]2 (7)

in which S, is the effective saturation

e - Br
s, = ~

es - or
(8)

In these equations, or and es are the residual and saturated
water contents, respectively; K, is the saturated hydraulic
conductivity; (Y and n are shape parameters; and m = 1 -
l/n.

Numerical Implementation

As was pointed out by Sorek and Braester [1986]  and
Huang [1988],  flow equation (1) has a parabolic-hyperbolic
nature similar to the convection-dispersion solute transport
equation. Numerical solutions of the flow and transport
equations often exhibit numerical oscillations and/or artifi-
cial dispersion. These difficulties are most often encountered
when the convection term in the transport equation, or
equivalently, the gravitational term in the flow equation,
dominates [Neuman, 1984; Casulli, 1988]. Huang [1988]
extended the Eulerian-Lagrangian method of Neuman [1984]
to the solution of the variably saturated flow equation by
applying a simple, efficient SRPT solution scheme to the
gravity term in (1). While successful for some tests, the
method suffered from mass balance errors and numerical
oscillations when the flow problem was highly nonlinear
and/or extremely dry initial soil profiles were considered.
We shall show below that the accuracy and efficiency of the
method of Huang [1988]  can be improved considerably by
implementing an adaptively corrected SRPT method.

Reformulation of the Richards’ equation

Following Huang [1988],  (1) can be rewritten in the form

-$g-S(z,  t) (9)
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which has a similar structure as the convection-dispersion where N is the number of nodes, and pi are chapeau
solute transport equation. Therefore we can follow the functions which vary linearly between neighboring nodes,
Eulerian-Lagrangian approach which has proved to be very being one at node i and zero at all other nodes. If the
effective for solving the convection-dispersion problem pressure head hf at time t is known, hf+‘*  at time level t +
[Neuman, 1984]. For this purpose, (9) is first rearranged as At can be solved using steps outlined in the next four
follows sections.

Single-step reverse particle tracking (SRPT)

The convective component K can be obtained using the

Using the substantial or Lagrangian derivative
SRPT technique described by Neuman [1984]  and Galeati et
al. [1992].  The method considers each node i to be a

Dh ah ah
-=
D t dt+“*az

fictitious particle which moves from location Zi at time t
along its characteristic path to location zi, the coordinate of(11)
node i, at time t + At. The location of the fictitious moving

(10) can be formulated in Lagrangian form as
particle i at time t can be tracked backward according to
(13), that is,

CD;=; Kg -S(z, t)( 1 (12) zi = q - I r+Ar
u* dt

t
(17)

in which h no longer represents the pressure head at a
particular point in space and time but rather the pressure

Since the velocity u* is a function of z and t, an iterative

head of a fluid particle moving along a characteristic path
procedure is required to accomplish the above integration.
O

described by the equation
nce location zi is computed, the corresponding convective

component of node i can be obtained by interpolation

dZldt  = v*
(13) between nodal values as follows:

N
In the above equations, Z represents the characteristic path
of a moving particle, and v* is the velocity of the fluid pi = C hf+j(Zii, (18)

particle along the characteristic path: j=l

1 aK aK Adaptive correction
~*~~~~_

c ah ae
h<O Formally, the computed convective component can be

(14) directly substituted into (15), after which a conventional FE

v* = 0 h>O
or FD method can be used to solve (12) for hf+Ar. However,
similar to numerical solutions for convection-dominated

We emphasize that u* is different from the pore water
velocity, u = q/O, in which q is the Darcian fluid flux
density. The transformed Richards’ equation (12) holds now
for a predominantly parabolic type diffusion problem that is
well suited for solution using the FE method. Numerical
solution of (12) will lead to a symmetric matrix equation.

Equation (12) subject to the initial and boundary condi-
tions can be solved on a fixed grid using the Eulerian-
Lagrangian approach by adopting the following FD approx-
imation of the Lagrangian derivative [Neuman, 1984]:

Dh ht+A’_  ,tj

ot= At
(15)

where At is the time increment and 6 is the ‘convective
component’, that is, the contribution of the gravitational
term to the pressure head. This contribution can be obtained
by implementing an adaptively corrected method of charac-
teristics to be described later.

Assume that the soil profile is discretized into N - 1
elements of variable size, Azi  (i = 1, 2, * * * , N - 1). The
dependent variable h can then be approximated using linear
finite elements as follows

N

h  ~ ~ L C hi(t)~i(z)
i=l

solute transport [Neuman, 1984], the SRPT technique tends
to produce numerical dispersion near the wetting front when
water flow is dominated by the gravity component aKlaz in
(1). In addition, numerical oscillations and mass balance
errors may appear when the hydraulic properties are highly
nonlinear. The following adaptive correction procedure was
developed to overcome these numerical difficulties.

As before, let pi be the convective component obtained by
the SRPT. A modified convective component h: may be
calculated at each time step by weighing pi with the pressure
heads of the first two nodes upstream of node i, that is,

F; = ; ([(l - h)hf_, + Ah;_,]  + &) (19)

where 0 5 A I 1 is a correction factor. The value of A is
automatically adjusted during each time step, according to
the global mass balance error 6, defined as

s = (Wq + wi - wOut) - wStOr  x looy

0

W
(20)

star

where W,, Wi, Wout, and W,,,,  are the volumes of water
infiltrated, initially present, drained, and currently stored in
the soil profile respectively.

When the mass balance error at time t is negative and its
absolute value is larger than the error at t - At, A is
increased at time t + At by some factor (e.g., 0.05). When
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the mass balance error at time t is positive and greater than
the error at t - At, A is decreased. However, A is kept
unchanged when the absolute mass balance error remains
the same or decreases. This approach assumes that the state Time-stepping procedure and evaluation
variable h at a node is affected primarily by the pressure of nonlinear coefficients
heads of the first two upstream nodes.

([a] t-h [B,){h)““’  = & [B](E*]  + {F} (25)

Since the hydraulic conductivity K and the soil water
capacity C in (1) are nonlinear functions of the pressure head
h, an iterative procedure is necessary at every time step to
obtain the correct solution. We used the Picard iteration
method with under-relaxation [van Genuchten, 1982; Kool
and van Genuchten, 19911. Convergence was assumed when
the following condition was satisfied:

Galerkin finite element representation

We used the Galerkin finite element method to solve the
transformed flow equation (12). The method is similar to the
scheme described in detail by van Genuchten [1982]  and
Kool and van Genuchten [1991].  Substituting (16) into the
Lagrangian governing equation (12), performing the Galerkin
orthogonalization, and applying the L2  mass-lumping
scheme used by van Genuchten [1982]  and Milly [1985],
leads to the matrix equation

D{h}
[A]{h} + [ B ]  z = {F}

where

(21)

[AijI = (22a)

[Bij] = Ci
I

’ +i dz (22b)
0

{Fi} = (-4 + K)$ilb  - I 1 S4i dZ (22c)
0

in which the subscripts i and j represent nodal indices. The
first term on the right-hand side of (22c) is not needed for
prescribed pressure head boundary conditions. Analogous to
the pressure head, the nonlinear coefficients K and C are
interpolated linearly across each element as follows:

N

K e C Ki+i(Z)
i=l

(23a)

N

C s 2 Ci+i(Z)
i=l

(23b)

where Ki and Ci are nodal values of the respective coeffi-
cients. A similar interpolation was also used for the root
uptake term S.

According to the Eulerian-Lagrangian approach, the nodal
Lagrangian derivative in (21) may be discretized by means of
backward finite differences using the approximation

Dh. h!+“‘-  h’I I-z
Dt At (24)

where the modified convective component ET is calculated
using (19). This approximation is consistent with the notion
that node i is regarded as a particle reaching Zi at tktl
[Neuman, 1984]. Substituting (24) into (21) leads to the final
matrix equation K. = K(h!+“*A’I I ) .

In our simulations, nodal values of hydraulic conductivity
were always evaluated at the half-time level using (7), that is,

&!‘A’ - h;+“l % 811hf+A'I  + 6, (26)
where 12 !+At  and h ftAt are, respectively, the projected and
computed values of the pressure head at the ith node at the
new time level, and 6i and a2 are relative and absolute
convergence criteria. The value of At was automatically
updated for each time step depending on how quickly the
solution converged at the previous time step. For this
purpose we used the adaptive time-stepping scheme imple-
mented previously by Kool and van Genuchten [1991].

Convergence and accuracy of the flow solution are
strongly influenced by how the nonlinear hydraulic conduc-
tivity K and the soil water capacity C are evaluated in the
numerical scheme. Different ways of evaluating the hydrau-
lic conductivity, and especially the soil water capacity, can
have pronounced effects on the mass balance error, partic-
ularly when steep moisture fronts are present. For such
situations, alternative solution schemes using water content
as the dependent variable have been proposed [e.g., Hills et
al., 1989]. The advantage of O-based schemes is that they are
inherently mass conservative. However, as pointed out by
Milly [1985],  a mass-conservative solution may also be
obtained with the head-based formulation if the capacity
term is evaluated in an appropriate manner. Mass conserva-
tion may be achieved by defining the soil water capacity so
that at the element level the following equality holds:

I C,(httAt  - h’) de =
I

(OrtAr  - 0’) de (27)
e e

in which C, is the effective element soil water capacity given
by (23b) and where integration is performed on an element
by element basis. According to the L2 mass-lumping scheme
[Milly,  1985] the resulting expressions for the nodal values of
C at time t are given by

(28)

When changes in the nodal pressure heads are very small,
the denominator of (28) approaches zero, in which case the
soil water capacity is best computed analytically as the
derivative of the soil water retention curve evaluated at the
half-time level hft1’2A’  = 1/2(h’ + hffAt), that is,

de (h)ci = -
dh (29)

h ,+112&r
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0 FE

Figure 1. Calculated water content (0) profiles versus depth (z) for ponded infiltration in soils with (Y =
0.01 cm-’  and (a) n = 1.3, (b) n = 2.0, and (c) n = 5.0. Solid lines represent characteristic finite element
(CFE) solutions; circles give finite elements (FE) results.

Numerical Verification
The proposed characteristic finite element scheme (CFE)

was tested by simulating ponded infiltration into a 200-cm-
deep soil profile. Results obtained with the CFE method will
be compared with solutions of the mass-conservative finite
element (FE) method of Kool and van Genuchten [1991].  To
facilitate comparisons between CFE and FE, all simulations
used L2  mass lumping, employed the same adaptive time-
stepping scheme, and implemented the same spatial discret-
ization, using uniform spatial increments AZ of 2 cm. The
simulations were carried out on an IBM 486/33 personal
computer. CPU time was used to compare the computational
efficiency of the different methods, while the numerical
accuracy was evaluated in terms of the mass balance error 6
given by (20). Simulations were carried out for different
hydraulic parameters and different initial pressure heads hi.
The residual and saturated water contents in (6) were as-
sumed to be 0.05 and 0.45, respectively, in all simulations.
Results will be presented for ponded infiltration assuming a
zero pressure head (ha = 0) at the soil surface.

Figure 1 compares water content profiles calculated using
the CFE method (solid lines) with those obtained using
standard FE (open circles) assuming hi = - 15,000 cm, (Y =
0.01 cm-‘, K, = 50 cm d-‘,  and three values of n; that is,
n = 1.3, typical of a relatively fine-textured soil, n = 2 for
a medium- to coarse-textured medium, and n = 5 for a
coarse-textured soil [Camel and Parrish, 1988; Yates et al.,
1992]. The CFE and FE simulation results are in close
agreement except for those in Figure la where the FE
solution appears to be slightly ahead of the CFE solution.
Both methods yielded mass balance errors of less than 0.05%
in this example. For n = 1.3, the CFE simulation required
slightly less CPU time (13.0 min) than the FE scheme (15.4
min). The improved efficiency of the CFE method is more
apparent when n = 5 (Figure lc), for which the CFE and FE
schemes used 9.1 and 22.6 min CPU time, respectively. By
comparison the CFE and FE schemes for n = 2 (Figure lb)
required 9.8 and 9.2 min, respectively.

Figure 2 shows pressure head distributions corresponding

to the water content profiles in Figure 1. It is evident from
Figures 1 and 2 that the pressure head wetting fronts are
much steeper than those for the water content. All CFE
simulations were found to be stable (no oscillations were
observed). The FE solutions, on the other hand, exhibited
some minor oscillations when n = 1.3 in the near-saturated
zones between the wetting fronts and the soil surface. The
FE scheme for n = 1.3 also produced slightly positive
pressure head values (0.5 ~ 3.0 cm) in this zone. These
results, not further noticeable in Figure 2a, are inconsistent
with the simulated ponded infiltration problem which in-
voked a zero pressure head boundary condition at the soil
surface. The simulated positive pressure heads probably also
caused the slightly steeper wetting fronts in Figures la and
2a for the FE scheme as compared to the CFE method.

The FE results in Figures 1 and 2 were obtained with the
L, mass-lumping scheme of Milly [1985].  Implementing the
mass-conservative mixed-form solution of the Richards’
equation [Celia et al., 1990] did not significantly improve the
results for n = 1.3. This scheme also exhibited oscillatory
solutions and, like the standard FE method, produced pos-
itive head values between the wetting fronts and the soil
surface. By comparison, the CFE never produced oscilla-
tions in computed pressure head distributions. The numeri-
cal oscillations and positive pressure values in the FE results
were found to increase at increasingly lower II values, and
likely were caused by the shape of the conductivity function
near saturation. As shown elsewhere [van Genuchten and
Nielsen, 1985; van Genuchten et al., 1991], relatively small n
values (e.g., 1.0 < n < 1.3) in (6) and (7) will lead to
extremely nonlinear K(h) functions near saturation, some-
times with important repercussions for accurately simulating
variably saturated flow [Vogel et al., 1992]. Adoption of
alternative K(h) functions, such as those by Brooks and
Corey [1964],  or modifications of (6) and (7) as proposed by
Vogel and Cislerova [1988],  may significantly decrease the
nonlinearities in the soil hydraulic functions and lead to more
stable flow (but dramatically different) simulation results
[Vogel et al., 1992].
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Figure 2. Calculated pressure head (h) distributions versus depth (z), corresponding to the results in
Figure 1. (a) n = 1.3; (b) IZ = 2.0; and (c) IZ = 5.0.

Figure 3 examines the effect of the parameter (Y on
numerical simulations assuming n = 2, K, = 50 cm d-l, an
initial pressure head hi of - 10,000 cm, and three values of
the parameter (Y: 0.1, 0.01, and 0.001 cm-‘. The CFE
solutions show relatively good agreement with the FE re-
sults for all three values of (Y. The mass balance error for
both methods was always less than 0.02%. The results in
Figure 3 are indicative of the fact that simulations with
higher (Y values (Figure 3a) generally produce steeper wet-
ting fronts than simulations with smaller (Y values (Figure
3c),  with the CFE scheme requiring somewhat less computer
time at the higher cr as compared to the FE method. The
CPU times for the CFE and FE schemes were, respectively,
3.3 and 7.8 mins for a! = 0.1, 8.3 and 7.4 min for (Y = 0.01,
and 4.5 and 4.2 min for (Y = 0.001.

Next, we examined the performance of the CFE scheme
for infiltration in soils having relatively large II values. Figure
4 demonstrates the capability of the CFE method to solve

OFE
- CFE

I . I ’ I * I ’
0.0 0.1 0.2 0.3 0.4 (

e

the flow problem with an extremely high value of 10 for II.
Soils of this type are characterized by very narrow pore and
particle size distributions (usually coarse-textured soils) and
typically have very nonlinear 0 (h) as well as K(h) hydraulic
functions [van Genuchten  and Nielsen, 1985]. The simula-
tions again pertained to ponded infiltration into a soil profile
having an initial pressure head hi of -10,000 cm and a
saturated hydraulic conductivity K, of 500 cm d -’ and
assuming (Y = 0.1 cm-‘. The CFE computed water content
and pressure head distributions are shown in Figures 4a and
4b, respectively. CPU time for this example was 6.0 min,
while the mass balance error was 0.53%. The standard finite
element (FE) method assuming the same finite element grid
system as used for CFE (constant AZ of 2 cm) failed to
converge for this infiltration problem. The mixed-form
method of Celia et al. [ 1990] also failed to converge when the
standard 2 cm for the grid spacing AZ was used. Smaller
nodal spacings also did not lead to convergent FE solutions.

a=0.01.  n-2.0

h,=-10+X0  cm

(b) l-0.2 d

-I-0.2 0.3 0.4 0.5

e

0

h

Figure 3. Simulated water content (0) distributions versus depth (z) for ponded infiltration in soils with
n = 2.0 and (a) (Y = 0.1, (b) cy = 0.01, and (c) (Y = 0.001 cm-‘.
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Figure 4. Calculated (a) water content, 8, and (b) pressure
head, h, distributions versus depth, z, obtained with the
CFE method for ponded infiltration in a very coarse-textured
(n = 10) soil profile.

Accurate and stable simulations of infiltration into very
dry soils are often difficult to obtain with standard numerical
methods [Zaidel and Russo, 1992] because of the develop-
ment of steep wetting fronts. Figure 5 shows one set of
results obtained with the CFE and FE schemes for ponded
infiltration into a soil having a very low initial pressure head
hi of -50,000 cm. The simulation concerned a medium- to
coarse-textured soil assuming (Y = 0.01 cm -I, n = 2, and K,
= 50 cm d-i. Simulation of the O.l-day infiltration event
required 10.7 and 12.0 min for the FE and CFE methods,
respectively. Notice the close agreement between the two
methods in Figure 5.

All calculations thus far were obtained with 2-cm ele-

-I
I.50

1 (b)

-50000 -25000

h (cm)

Figure 5. Calculated (a) water content (0) and (b) pressure
head (h) distributions versus depth, Z, for ponded infiltration
into an initially very dry (hi = -50,000 cm) soil profile.

0
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0 Az=2.0  cm e,=o.41.  e,=o.osi
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I ' I , 7 I
) 0.10 0.20 0.30 0.40

e

Figure 6. Effect of spatial discretization, AZ, on simulated
water content (0) distributions versus depth (z) using the
CFE method.

ments. We also examined the effects of different spatial
increments on the results, again for ponded infiltration.
Figure 6 compares calculated water content distributions
assuming element sizes AZ of 1, 2, and 4 cm. The corre-
sponding CPU times were 7.5, 2.6, and 0.98 min, and the
introduced mass balance errors were 0.0397%, 0.055%, and
0.0125% for AZ = 1, 2, and 4 cm, respectively. The results
indicate that the solutions with AZ = 1 cm and AZ = 2 cm
are very close, while some relatively minor deviations
appear near the wetting front when A Z = 4 cm. This shows
that the CFE method can produce accurate solutions using
relatively large spatial increments, thus further improving
the computational efficiency as compared to the FE method.

The above results, as well as those of many other simula-
tions, indicate that the proposed CFE method is computa-
tionally somewhat more efficient than the standard FE for
situations leading to relatively steep pressure head wetting
fronts. Such situations most often arise for soils having very
large or very small n values, and/or relatively large (Y values.
However, the FE method is equally or slightly more efficient
than the CFE scheme for more moderate nonlinear infiltra-
tion problems involving intermediate n and relatively small (Y
values. This feature results from the fact that the CFE
method requires additional computations for solving (17)
that are associated with the gravity term in the flow equa-
tion. Intermediate values of n in (6) and (7) do not lead to
strongly nonlinear soil hydraulic properties and steep wet-
ting fronts, and hence there appears little advantage to
employing the particle tracking method. These conclusions
are consistent with studies by van Genuchten and Nielsen
[1985]  and van Genuchten et al. [1991] who show that the
unsaturated hydraulic properties, especially K(h), become
very nonlinear for soils having relatively small (e.g., 1 .O < n
5 1.3) or large (n 2 3) values of n. Numerical simulations
of infiltration in such soils using standard FE or FD methods
are generally the most difficult, especially for initially very
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dry soil profiles. The most extreme cases arise when the
gravity term of (1) is relatively dominant, in which case the
flow equation acquires hyperbolic properties which are best
treated with the proposed CFE method.

The results in this paper pertain to ponded infiltration. We
also carried out several simulations for constant flux infiltra-
tion at the soil surface. The proposed CFE method was
found to work efficiently and accurately and found to be
oscillation-free for most numerical tests. However, some
minor oscillations were observed when the applied surface
boundary flux q0 was close to K, for infiltration into
fine-textured soils having extremely small n values (such as
n = 1.05).
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